293 research outputs found

    A neural network z-vertex trigger for Belle II

    Full text link
    We present the concept of a track trigger for the Belle II experiment, based on a neural network approach, that is able to reconstruct the z (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger will thus be able to suppress a large fraction of the dominating background from events outside of the interaction region. The trigger uses the drift time information of the hits from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum (sectors), and estimates the z-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input from the 2D (rφr - \varphi) track finder, adds information from the stereo wires of the CDC, and finds the appropriate sectors in the CDC for each track in a given event. Within each sector, the z-vertex of the associated track is estimated by a specialized neural network, with a continuous output corresponding to the scaled z-vertex. The input values for the neural network are calculated from the wire hits of the CDC.Comment: Proceedings of the 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT), Preprint, reviewed version (only minor corrections

    The Belle II flavor tagger

    No full text
    Belle II is a particle-physics experiment at the intensity frontier focused on probing non Standard Model physics through precision measurements of quark-flavor and τ-lepton dynamics. Determining the flavor of neutral B mesons, i.e. their quark composition, is a crucial task which is addressed using flavor tagging algorithms. Due to the novel high-luminosity conditions and the increased beam backgrounds at Belle II, an improved flavor tagging algorithm had to be developed to ensure the success of the Belle II physics program. The new Belle II flavor tagger exploits the flavor-specific signatures of B 0 decays employing boosted decision trees and neural networks. It identifies B 0-decay products providing flavor-specific signatures and combines the information from all possible signatures into a final output. The algorithm has been validated by comparing its performance on simulated events with its performance on collision events collected by the predecessor experiment Belle. To explore the advantages of state-of-the-art deep-learning techniques, the Belle II collaboration developed a deep-learning-based flavor tagger. This algorithm tags the flavor of B 0 mesons without identifying flavor specific signatures using a deep-learning neural network. The validation on Belle data of this algorithm is currently ongoing

    First measurement of the Zμ+μZ\rightarrow \mu^+ \mu^- angular coefficients in the forward region of pppp collisions at s=13\sqrt{s}=13 TeV

    No full text
    The first study of the angular distribution of μ+μ\mu^+ \mu^- pairs produced in the forward rapidity region via the Drell-Yan reaction ppγ/Z+Xl+l+Xpp \rightarrow \gamma^{*}/Z +X \rightarrow l^+ l^- + X is presented, using data collected with the LHCb detector at a centre-of-mass energy of 13TeV, corresponding to an integrated luminosity of 5.1 fb1\rm{fb}^{-1}. The coefficients of the five leading terms in the angular distribution are determined as a function of the dimuon transverse momentum and rapidity. The results are compared to various theoretical predictions of the ZZ-boson production mechanism and can also be used to probe transverse-momentum-dependent parton distributions within the proton

    Precision measurement of forward ZZ boson production in proton-proton collisions at s=13\sqrt{s} = 13 TeV

    No full text
    A precision measurement of the ZZ boson production cross-section at s=13\sqrt{s} = 13 TeV in the forward region is presented, using pppp collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb1^{-1}. The production cross-section is measured using Zμ+μZ\rightarrow\mu^+\mu^- events within the fiducial region defined as pseudorapidity 2.0202.020 GeV/cc for both muons and dimuon invariant mass 60<Mμμ<12060<M_{\mu\mu}<120 GeV/c2c^2. The integrated cross-section is determined to be \begin{equation*} \sigma(Z\rightarrow\mu^+\mu^-) = 195.3 \pm 0.2 \pm 1.5 \pm 3.9~pb, \end{equation*} where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions, including a prediction at next-to-next-to-leading order in perturbative quantum chromodynamics and a prediction with resummation

    Observation of sizeable ω\omega contribution to χc1(3872)π+πJ/ψ\chi_{c1}(3872) \to \pi^+\pi^- J/\psi decays

    No full text
    Resonant structures in the dipion mass spectrum from χc1(3872)π+πJ/ψ\chi_{c1}(3872)\to\pi^+\pi^- J/\psi decays, produced via B+K+χc1(3872)B^+\to K^+\chi_{c1}(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1^{-1}. A sizeable contribution from the isospin conserving χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi decay is established for the first time, (21.4±2.3±2.0)%(21.4\pm2.3\pm2.0)\%, with a significance of more than 7.1σ7.1\sigma. The amplitude of isospin violating decay, χc1(3872)ρ0J/ψ\chi_{c1}(3872)\to\rho^0 J/\psi, relative to isospin conserving decay, χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi, is properly determined, and it is a factor of six larger than expected for a pure charmonium state.Resonant structures in the dipion mass spectrum from χc1(3872)→π+π-J/ψ decays, produced via B+→K+χc1(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9  fb-1. A sizeable contribution from the isospin conserving χc1(3872)→ωJ/ψ decay is established for the first time, (21.4±2.3±2.0)%, with a significance of more than 7.1σ. The amplitude of isospin violating decay, χc1(3872)→ρ0J/ψ, relative to isospin conserving decay, χc1(3872)→ωJ/ψ, is properly determined, and it is a factor of 6 larger than expected for a pure charmonium state.Resonant structures in the dipion mass spectrum from χc1(3872)π+πJ/ψ\chi_{c1}(3872)\to\pi^+\pi^- J/\psi decays, produced via B+K+χc1(3872)B^+\to K^+\chi_{c1}(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1fb^{-1}. A sizeable contribution from the isospin conserving χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi decay is established for the first time, (21.4±2.3±2.0)%(21.4\pm2.3\pm2.0)\%, with a significance of more than 7.1σ7.1\sigma. The amplitude of isospin violating decay, χc1(3872)ρ0J/ψ\chi_{c1}(3872)\to\rho^0 J/\psi, relative to isospin conserving decay, χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi, is properly determined, and it is a factor of six larger than expected for a pure charmonium state

    First measurement of the Zμ+μZ\rightarrow \mu^+ \mu^- angular coefficients in the forward region of pppp collisions at s=13\sqrt{s}=13 TeV

    No full text
    The first study of the angular distribution of μ+μ\mu^+ \mu^- pairs produced in the forward rapidity region via the Drell-Yan reaction ppγ/Z+Xl+l+Xpp \rightarrow \gamma^{*}/Z +X \rightarrow l^+ l^- + X is presented, using data collected with the LHCb detector at a centre-of-mass energy of 13TeV, corresponding to an integrated luminosity of 5.1 fb1\rm{fb}^{-1}. The coefficients of the five leading terms in the angular distribution are determined as a function of the dimuon transverse momentum and rapidity. The results are compared to various theoretical predictions of the ZZ-boson production mechanism and can also be used to probe transverse-momentum-dependent parton distributions within the proton

    Measurement of the charm mixing parameter yCPyCPKπy_{CP} - y_{CP}^{K\pi} using two-body D0D^0 meson decays

    No full text
    A measurement of the ratios of the effective decay widths of D0ππ+D^0 \to \pi^-\pi^+ and D0KK+D^0 \to K^-K^+ decays over that of D0Kπ+D^0 \to K^-\pi^+ decays is performed with the LHCb experiment using proton-proton collisions at a centre-of-mass energy of 13TeV13 \, \mathrm{TeV}, corresponding to an integrated luminosity of 6fb16 \, \mathrm{fb^{-1}}. These observables give access to the charm mixing parameters yCPππyCPKπy_{CP}^{\pi\pi} - y_{CP}^{K\pi} and yCPKKyCPKπy_{CP}^{KK} - y_{CP}^{K\pi}, and are measured as yCPππyCPKπ=(6.57±0.53±0.16)×103y_{CP}^{\pi\pi} - y_{CP}^{K\pi} = (6.57 \pm 0.53 \pm 0.16) \times 10^{-3}, yCPKKyCPKπ=(7.08±0.30±0.14)×103y_{CP}^{KK} - y_{CP}^{K\pi} = (7.08 \pm 0.30 \pm 0.14) \times 10^{-3}, where the first uncertainties are statistical and the second systematic. The combination of the two measurements is yCPyCPKπ=(6.96±0.26±0.13)×103y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26 \pm 0.13) \times 10^{-3}, which is four times more precise than the previous world average
    corecore